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INTRODUCTION

 Carbon fiber reinforced polymer/plastic 
(CFRP) composites are widely used in the aero-
space industry due to their low weight and high 
strength properties – including both high strength-
to-weight ratio and high stiffness-to-weight ratio. 
For example, in Bombardier Series C aircraft, 
CFRP composites account for 46% of the struc-
ture [1], while in the Airbus A350 and Boeing 
787 it is more than 50% [2]. Despite the higher 
requirements for military aviation, CFRP com-
posites are also used here on a regular basis. For 
example, in the structure of the CH-53K helicop-
ter, more than 75% of the mass comprises CFRP 
composites, while in the Eurofighter combat 

aircraft this share is around 40% [3]. CFRP com-
posites are used to manufacture highly loaded and 
load-bearing aircraft parts, such as fuselage pan-
els, window frames, frames, clips, door, hybrid 
door frame, nose section, horizontal stabilizers, 
rotor blades, etc.

Structural components manufactured using 
CFRP composites are often bonded together or 
combined with other materials, such as metals. 
This is in addition to the frequently used mechan-
ical connections, such as screw, rivet or rivet nut 
joints [4], which can cause delamination or intro-
duce damaging stresses [5–7]. Adhesive-based 
joints are often used in aeronautical structures, 
where adequate surface preparation of the com-
posite is essential in order to achieve a suitable 
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adhesive bond. Mechanical treatment, sand blast-
ing [8–11], chemical treatment [12, 13] or laser 
treatment [14–16] are most commonly used for 
surface preparation. The use of such techniques 
results in an increase in surface roughness [5, 17], 
and thus an increase in the strength of the adhe-
sive bond. Many studies indicate that the proper-
ties of adhesive joints depend on a number of key 
factors, and these include [18–20]: type of adhe-
sive [21], type of hardener, surface condition, ad-
hesive application method, application conditions 
(temperature, humidity and adhesive open time), 
curing conditions, operating environment, chemi-
cal resistance and joint geometry [22–25].

Laser processing as a non-contact surface 
preparation method has been the subject of many 
tests, both for metal surfaces and composite sur-
faces [26, 27]. Infrared emitting lasers (CO2 la-
sers, NdYAG lasers) are used, which are well ab-
sorbed by the carbon material, along with ultra-
violet emitting lasers (excimer lasers) with higher 
energy. The aim of laser texturing is to remove 
contaminants from the substrate surface and to 
change features, such as the geometric structure 
of the surface and the activity of the substrate, by 
changing the free surface energy (SFE). The cor-
rect choice of laser beam parameters, i.e. wave-
length, output power, pulse duration, number 
of emissions and frequency, allows the correct 
surface preparation. Too high a beam power can 
melt the surface and damage the fibres, while too 
low a beam power can insufficiently remove con-
taminants [28]. However, with proper parameter 
control, laser machining appears to be one of the 
most promising surface treatment methods due to 
its parameterisation and repeatability. The impact 
of a laser beam on the surface of the composite 
involves its texturing and activation, which, ac-
cording to the mechanical theory of adhesion and 
theories taking into account surface energy (ther-
modynamic, molecular, adsorption), has a key 
impact on the quality of the adhesive bond. Previ-
ous research by Qinggeng Meng and co-workers 
[29] on the laser ablation of composite surfaces 
(CFRP) has shown that laser treatment signifi-
cantly reduces the wetting angle of CFRP surfac-
es, from 111.9° to 7.5°, indicating a better abil-
ity of the surface to be wetted by adhesives. The 
increased hydrophilicity of the surface promotes 
better spreading and penetration of the adhesive 
on the composite surface, which is key to im-
proving the quality of the adhesive bonds. Laser 
processing leads to the formation of micro- and 

nanostructures on the CFRP surface, which in-
creases the contact surface between the adhesive 
and the composite, translating into better adhe-
sion. In addition, the laser effectively removes 
resin layers and contaminants from the CFRP sur-
face, which is key to improving the quality of ad-
hesive bonds [30]. In a study by Feiyun Wang and 
co-workers [31], it was shown that UV laser treat-
ment could increase the average shear strength of 
CFRP adhesive joints by 42.32% compared to 
mechanical treatment.

The aim of this paper was to determine the 
effect of the preparation of the CFRP composite 
material by sand blasting, as well as laser machin-
ing performed in three variants: perpendicular, 
parallel and zigzag, on the value of the SFE of the 
composite studied.

EXPERIMENTAL PROCEDURE

The carbon fibre composite plates with epoxy 
matrix used in the study were made using an au-
toclave process. Ten layers of prepreg in the form 
of carbon fibre fabrics with the following trade 
name were used to manufacture the panels: Hex-
Ply AGP-198, with the prepreg supplier being 
HEXCEL (Stamford, USA). The process of pre-
paring the composites before curing took place in 
a clean room. The curing process took place at 
180°C with an overpressure of 3 bar, while the 
basic curing time was 90 minutes. The course of 
the autoclaving process is shown in Figure 1.

Panels measuring 1000×1000 mm and 2 mm 
thick were made. The composite panels prepared 
in this way were cut into 100×25 mm specimens 
with a thickness of 2 mm. Cutting was carried out 
using a Kimla milling plotter with a working area 
of: 1500×2050 mm. Table 1 shows the surface 
preparation technologies of the carbon composite 
used in the test process.

Table 1. Preparation technologies for carbon composite 
samples

Options Preparation of carbon composite specimens

1 Mould

2 Sand blasting

3 Delamination

4 Laser texturing – perpendicular

5 Laser texturing – parallel

6 Laser texturing – zigzag
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Surfaces were textured with use of laser en-
graver SpeedMarker 300, made by Trotec®, 
equipped with a Ytterbium pulsed fibre laser, 
type FL 20 MOPA. Texturing parameters were 
set at specific values: Laser power 5 W (25% of 
full power), Focal length 254 mm, Focal diameter 
64 µm, Pulse duration 8 ns, Pulse repetition rate 
280 kHz, and marking speed 100 mm/s. Marking 
path of the beam were generated as a wobble line 
oscillating around a guiding profile. The width of 
the oscillating path was 0.1 mm and the frequen-
cy of the oscillation was 1 kHz.

The specimens were cleaned prior to the sur-
face layer testing process. This mechanical clean-
ing was done in two steps: first each test specimen 
was washed with a degreaser (Loctite 7063) fol-
lowed by wiping with a paper towel (both opera-
tions were done twice), and second the test speci-
mens were washed with the degreaser (Loctite 
7063), which was left to evaporate.

A PGX goniometer with software was used to 
measure the wetting angle on the carbon composite 
surface under test and to determine the SFE. The 
wetting angle was measured with distilled water 
and diiodomethane at least ten times on each of 
the test specimens of interest. The measurements 
were made on a test panel and followed a level 
check with an optical level gauge, at an ambient 
temperature of 19–21°C and 45–50% RH. The 
test liquids used for measuring the wetting angle 
were applied to the test specimen surface automati-
cally, in drips of a constant volume of 5 µl, as dis-
pensed by the goniometer. For the calculations, the 
following values of the test liquid SFE and their 
polar and dispersion components were assumed: 
Water SFE γw=72.8 [mJ/m2], water SFE polar 

component γp
w=51.0 [mJ/m2], water SFE disper-

sion component γd
w=21.8 [mJ/m2], diiodomethane 

SFE γd=50.8 [mJ/m2], diiodomethane SFE polar 
component γp

d=2.3 [mJ/m2], diiodomethane SFE 
dispersion component γd

d=48.5 [mJ/m2].
The study also used a Keyence VHX-5000 

microscope to image the surface of carbon com-
posite specimens after various surface prepara-
tion treatments, according to the technology pre-
sented in Table 1.

A 3D T8000 RC-120-400 from Hommel-Etam-
ic with a 2 µm radius measuring tip was used to 
measure surface roughness. The study analysed se-
lected 3D surface roughness parameters for all the 
machining variants analysed. The following 3D pa-
rameters were considered: Sa – arithmetic mean of 
the 3D profile ordinates, Sz – maximum height of 
the 3D profile, Sp – height of the highest elevation 
of the 3D profile and Sv – value of the lowest de-
pression of the 3D profile. The difficulties encoun-
tered by surface engineering in linking technologi-
cal and operational quality are too great to predict 
specific operational properties on the basis of the 
measured surface roughness parameters. In tech-
nologies where the adhesion phenomenon plays 
a major role, it is important to determine, on the 
basis of selected surface roughness parameters, the 
degree of surface development in geometric terms.

RESULTS

Figure 2 shows the influence of the carbon 
composite sample preparation technology on the 
value of the SFE, including its dispersive and po-
lar components.

Fig. 1. Autoclaving process flow for composite panels



273

Advances in Science and Technology Research Journal 2024, 18(1), 270–277

Based on the tests carried out the highest in-
crease in SFE values was found for the samples 
made with technology 5 (according to Table 1) 
compared to the samples made with technology 
2. The SFE increased by 23%. It is worth noting 
the results obtained for specimens made using the 
technologies described as 4, 5 and 6, i.e. with la-
ser processing. These technologies performed fa-
vourably in terms of the increase in the SFE val-
ues compared to other types of surface layer prep-
aration of the samples analysed, with increases 
ranging from 19% to 23%. In the tests presented 
here, it is important to note the relatively small 
measures of scatter in the results, which perhaps 
indicates the high reproducibility of the prepared 
surfaces. Table 2 summarises photographs of the 
surface of the carbon composite after different 
surface layer preparation methods.

Based on the analysis, a glossy surface with 
a clearly visible carbon fabric structure was ob-
served for technology 1. A similar carbon fabric 
structure was observed for technology 3, while 
in this case the surface was matt with a signifi-
cant degree of surface development in geometric 
terms. The characteristic surface is the surface of 
the specimen prepared using a sand blasting pro-
cess (technology 2). In this case, the photograph 

of the carbon fabric structure has been blurred, 
which may indicate the removal of a layer of ma-
terial. Specimens prepared using technologies 4, 
5 and 6 have high reproducibility. Table 3 shows 
the surface topography of the carbon composite 
specimens along with selected 3D surface rough-
ness parameters. Testing of selected 3D surface 
roughness parameters was carried out in accor-
dance with ISO 25178.

The table contains 3D isometric images with 
selected 3D surface roughness parameters and 2D 
images of the analysed carbon composite surfac-
es prepared with different technologies. The sur-
face roughness tests carried out on the specimens 
quantitatively and qualitatively confirmed the ob-
servation made with the microscope. Specimens 
prepared according to technologies 2 and 3 had 
the highest degree of surface development com-
pared to the other technologies. The value of the 
Sa parameter for these technologies was at a simi-
lar level, at Sa = 18.5 µm (for technology 2) and Sa 
= 18.2 µm (for technology 3), respectively. The 
lowest value of the Sa parameter was observed for 
the specimens prepared according to technology 
1, where Sa = 0.107 µm. Composite test specimen 
preparation technologies 4, 5 and 6 were charac-
terised by similar levels of Sa parameter values 

Fig. 2. SFE values and the dispersive and polar components
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Table 2. Photographs of the carbon composite surface after selected surface preparation methods, according to the 
technologies shown in Table 1

Technologies Magnification x 100 Magnification x 250 

1 

  

2 

  

3 

  

4 

  

5 

  

6 
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Table 3. Surface topography with selected 3D surface roughness parameters
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and amounted respectively to: Sa = 1.52 µm (for 
technology 4), Sa = 1.81 µm (for technology 5) 
and Sa = 2.37 µm (for technology 6). A similar 
trend was observed for the other surface rough-
ness parameters.

CONCLUSIONS

On the basis of the tests carried out and the 
analysis of the results obtained, the following 
general conclusions can be drawn:
1. The sand blasting treatment significantly de-

velops the analysed surface by removing the 
surface layer, thus exposing the carbon fabric. 
This fact requires further tests due to the pos-
sibility of damage to the support structures of 
the composite.

2. The largest increase in the SFE and its polar 
component was observed for the samples after 
laser treatment, i.e. for technologies 4, 5 and 6.

3. The greatest increase in the polar component 
of the SFE was observed for samples prepared 
according to technology 5 (laser treatment), 
which is of decisive importance in adhesive 
technologies.

In technologies where adhesive properties are 
involved, it is extremely important to appropriate-
ly correlate the SFE parameters with the compo-
nents and selected surface roughness parameters. 
It appears that the laser processing of composite 
specimens may be a suitable preparation method 
for such technologies as the bonding, sealing or 
encapsulation of structures.
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